

TS61 Series Voltage Detector

SOT-23

Pin Definition:

- 1. Output
- 2. Ground
- 3. Input

General Description

The TS61 series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser trimming technologies. Detect voltage is extremely accurate with minimal temperature drift. Both CMOS and N-channel open drain output configurations are available.

Features

- Highly Accurate: ±2%
- **Detecting Voltage Temperature Characteristics:** TYP ± 100ppm /°C
- Low Power Consumption, 0.7uA (typ) @V_{IN}=1.5V
- Detect Voltage Range: 1.6V ~ 6.0V
- Operating Voltage Range: 0.7V ~ 10V
- **Output Configuration:**

N-Channel open drain or CMOS

Applications

- Battery-operated systems
- Microprocessor reset circuitry
- Memory battery back-up circuits
- Power-on reset circuits
- Power failure detection
- System battery life and charge voltage monitors

Ordering Information

Part No.	Package	Packing		
TS61C <u>xx</u> CX RF	SOT-23	3Kpcs / 7" Reel		
TS61N <u>xx</u> CX RF	SOT-23	3Kpcs / 7" Reel		

Note:

* Where xx denotes voltage option, available are

20= 2.0V **23**= 2.3V **24**= 2.4V 25= 2.5V

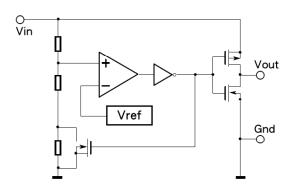
27= 2.7V 30= 3.0V

33= 3.3V

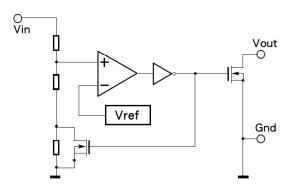
40= 4.0V

42= 4.2V **44**= 4.4V

45= 4.5V


Contact factory for additional voltage option.

* TS61C: CMOS output


* TS61N: N-Channel Open Drain Output

Block Diagram

CMOS Output

N-Channel Open Drain Output

TS61 Series Voltage Detector

Absolute Maximum Rating

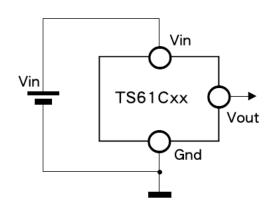
Parameter		Maximum	Unit	
	V_{IN}	+12	V	
	lo	50	mA	
CMOS	M	$(Gnd - 0.3)$ to $(V_{IN} + 0.3)$		
N-channel open drain	V _{OUT}	(Gnd – 0.3) to 12	V	
SOT-23	P_D	150	mW	
ure Range	T _A	-40 ~ +85	°C	
	T _{STG}	-65 ~ +150	°C	
	N-channel open drain SOT-23	CMOS V _{OUT}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Note: Stress above those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation section of the specifications is not implied.

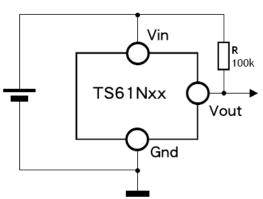
Electrical Specifications (Ta = 25 °C, unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Max	Unit	Circuit	
Detect Voltage		V_{DF}	V _{DF} x 0.98	V_{DF}	V _{DF} x 1.02	V	1	
Hysteresis range		V _{HYS} / V _{DF}	2		8	%	1	
Supply Current	V _{IN} =1.5V	Iss		0.7	2.3	μΑ	2	
	V _{IN} =2.0V			0.8	2.7			
	V _{IN} =3.0V			0.9	3.0			
	V _{IN} =4.0V			1.0	3.2			
	V _{IN} =5.0V			1.1	3.6			
Operating Voltage	V _{DF} (T)=1.6V~6V	V _{IN}	0.7		10.0	V	1	
Output Current	N-channel V _{DS} =5V							
	V _{IN} =1.0V	I _{OUT}	1.0	2.2		mA	3	
	V _{IN} =2.0V		3.0	7.7				
	V _{IN} =3.0V		5.0	10.1				
	V _{IN} =4.0V		6.0	11.5				
	V _{IN} =5.0V		7.0	13.0				
	P-channel V _{DS} =2.1V (with CMOS output)							
	V _{IN} =8.0V	I _{OUT}		-10.0	-2.0	mA	4	
Temperature	40°C T 05°C	ΔV_{DF}		±100		ppm /		
Characteristics	-40°C ≤ T _A ≤ 85°C	$\Delta T_A x V_{DF}$				°C		
Delay Time	Vdr → V _{OUT} inversion	t _{DLY}			0.2	ms	5	

Note: $V_{DF}(T)$: Established Detect Voltage Value, 1.6V ~ 6.0V ±2% for Standard Voltage Detectors Release Voltage: $V_{DR} = V_{DF} + V_{HYS}$



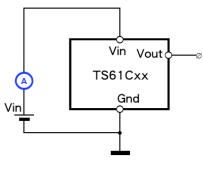
TS61 Series


Voltage Detector

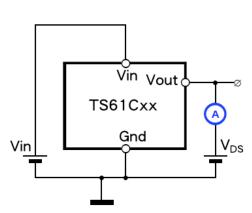
Pb) ROHS COMPLIANCE

Typical Application Circuit CMOS Output

N-Channel Open Drain Output

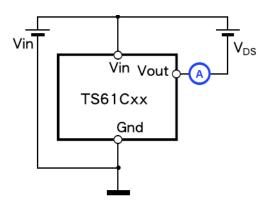


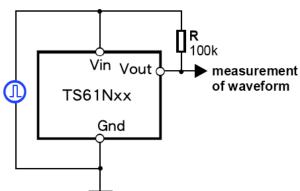
Measuring Circuit



* Not Necessary with CMOS output product

Test Circuit 2




Test Circuit 3

Test Circuit 4

Test Circuit 5

* Not Necessary with CMOS output products

Pb RoHS

TS61 Series

Voltage Detector

Directions for use

- Please use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage to the device.
- 2. When a resistor is connected between the V_{IN} pin and the input CMOS output configurations, oscillation may occur as a result of voltage drops at R_{IN} if load current (I_{OUT}) exists. (refer to the Oscillation Description ① below).
- 3. When a resisted is connected between the V_{IN} pin and the input with CMOS output configurations, irrespective of N-ch output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (I_{OUT}) does not exist. (refer to the Oscillation Description ② below)
- 4. In order to stabilize the IC's operations, please ensure that V_{IN} pin's input frequency's rise and fall times are more than several $\mu s/V$.
- 5. Please use N-ch open drains configuration, when a resistor R_{IN} is connected between the V_{IN} pin and power source. In such cases, please ensure that R_{IN} is less than $k\Omega$ and that C is more than $0.1\mu F$.

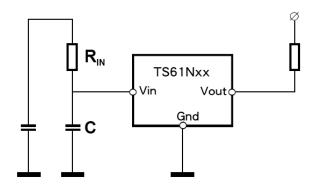


Diagram: Circuit using an input resistor

Oscillation Description

OUTPUT CURRENT OSCILLATION WITH THE CMOS OUTPUT CONFIGURATION

When the voltage applied at IN rises, release operations commence and the detector's output voltage increases. Load current (I_{OUT}) will flow at R_L . Because a voltage drop ($R_{IN} \times I_{OUT}$) is produced at the R_{IN} resistor, located between the input (IN) and the V_{IN} pin, the load current will flow via the IC's V_{IN} pin. The voltage drop will also lead to a fall in the voltage level at the V_{IN} pin. When the V_{IN} pin voltage level falls below the detec voltage level, detect operations will commence. Following detect operations, load current flow will cease and since voltage drop at R_{IN} will disappear, the voltage level at the V_{IN} pin will rise and release operations will begin over again. Oscillation may occur with this "release-detect-release" repetition. Further, this condition will also appear via means of a similar mechanism during detect operations.

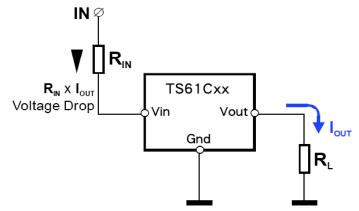


Diagram 1: Oscillation in relation to output current

TS61 Series

Oscillation Description (Continue)

OUTPUT CURRENT OSCILLATION WITH THE CMOS OUTPUT CONFIGURATION

Since the TS61 series are CMOS ICs, through current will flow when the IC's internal circuit switching operates (during release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (R_{IN}) during release voltage operations (refer to diagram 2). Since hysteresis exists during detect operation, oscillation is unlikely to occur.

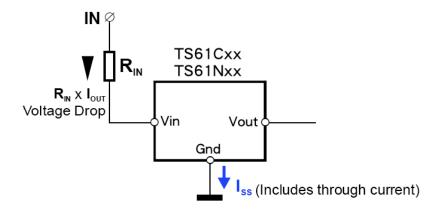
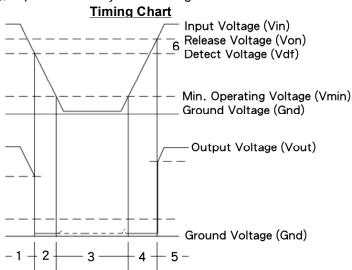
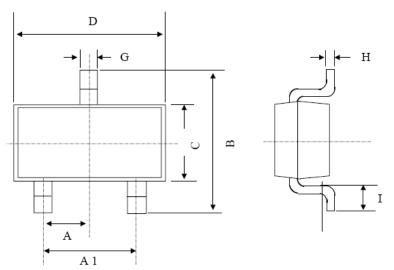



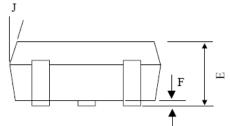
Diagram 2: Oscillation in relation to through current

Function Description

- 1. When input voltage (V_{IN}) rises above detect voltage (V_{DF}), output voltage (V_{OUT}) will be equal to V_{IN}. (A condition of high impedance exists with N-ch open drain output configurations).
- 2. When input voltage (V_{IN}) falls below detect voltage (V_{DF}) , output voltage will be equal to the ground voltage (V_{SS}) .
- 3. When input voltage (V_{IN}) falls to a level below that of the minimum operating voltage (V_{MIN}) , output will become unstable. In this condition, V_{IN} will equal the pulled-up output (should output be pull-up).
- 4. When input voltage (V_{IN}) rises above the ground voltage (V_{SS}) level, output will be unstable at levels below the minimum operating voltage (V_{MIN}). Between the V_{MIN} and detect release voltage V_{DR} level, the ground voltage (V_{SS}) level will be maintained.
- 5. When input voltage (V_{IN}) rises above detect release voltage (V_{DR}) , output voltage (V_{OUT}) will be equal to V_{IN} . (A condition of high impedance exists with N-ch open drain output configurations.)
- 6. The difference between V_{DR} and V_{DF} represents the hysteresis range.



TS61 Series


Voltage Detector

SOT-23 Mechanical Drawing

SOT-23 DIMENSION						
DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX.		
Α	0.95 BSC		0.037 BSC			
A1	1.9 I	1.9 BSC		0.074 BSC		
В	2.60	3.00	0.102	0.118		
С	1.40	1.70	0.055	0.067		
D	2.80	3.10	0.110	0.122		
Е	1.00	1.30	0.039	0.051		
F	0.00	0.10	0.000	0.004		
G	0.35	0.50	0.014	0.020		
Н	0.10	0.20	0.004	0.008		
I	0.30	0.60	0.012	0.024		
J	5°	10°	5°	10°		

TS61 Series Voltage Detector

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.